Abstract

Propionate, a fermented product in the lumen of the large intestine, is a short-chain fatty acid (SCFA) known to have a variety of localized physiological and pathophysiological functions (e.g., luminal fluid secretion and anti-inflammatory response). In the present study, we investigated propionate-induced transepithelial ion transport and the expression of SCFA receptor, free fatty acid receptor 2 (FFA2, otherwise known as GPR43) in the guinea pig distal colon utilizing the Ussing chamber technique and immunohistochemistry. The addition of propionate to the luminal bathing solution concentration-dependently induced transient K(+) and Cl(-) and/or bicarbonate secretion within approximately 30s and long-lasting Cl(-) secretion for approximately 60min was first identified in the present study. The transient anion secretion was tetrodotoxin (TTX)-sensitive and mediated through the cholinergic (both nicotinic and muscarinic) neural pathway, but the transient K(+) and long-lasting Cl(-) secretion were due to TTX-insensitive mechanism. Immunohistochemistry studies showed that some chromogranin A-immunoreactive enteroendocrine cells were also immunoreactive for FFA2 but not colocalized with 5-hydroxytryptamine. In conclusion, the propionate-induced secretion consisted of the neural and non-neural three-phase secretory manner possibly mediated by the stimulation of FFA2 expressed by enteroendocrine cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.