Abstract

Cross sectional studies have shown that statin-users have improved odds of surviving severe sepsis. Meanwhile controlled clinical trials failed to demonstrate improved sepsis survival with acute statin administration following hospitalization. Here, a lethal murine peritoneal lipopolysaccharide (LPS) endotoxemia model was used to assess the efficacy of chronic versus acute simvastatin on survival. Mirroring clinical observations, chronic but not acute treatment with simvastatin significantly increased survival. At a pre-mortality time point in LPS-treated mice, chronic simvastatin suppressed granulocyte trafficking in to the lungs and peritoneum without otherwise suppressing emergency myelopoiesis, myeloid cells in circulation, or inflammatory cytokines. Chronic simvastatin treatment significantly downregulated inflammatory chemokine gene signature in the lungs of LPS-treated mice. Thus, it was unclear if simvastatin was inhibiting granulocyte chemotaxis in a cell intrinsic or extrinsic manner. Adoptive transfer of fluorescently labeled granulocytes from statin and vehicle treated mice into LPS-treated mice showed that simvastatin inhibited lung-granulocyte trafficking in a cell intrinsic manner. Congruent with this, chemotaxis experiments using in vitro macrophages and ex vivo granulocytes demonstrated that simvastatin inhibited chemotaxis in a cell-intrinsic manner. Collectively, chronic but not acute simvastatin treatment improved survival in murine endotoxemia, and this was associated with cell-intrinsic inhibition of granulocyte chemotaxis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call