Abstract

This study examines the antimicrobial and antibiofilm effectiveness of baicalin and carvacrol against Salmonella enterica ser. Typhimurium on food contact surfaces and chicken meat. The minimum inhibitory concentrations (MIC) for baicalin and carvacrol were found to be 100 μg/mL and 200 μg/mL, respectively, which aligns with findings from previous studies. The compounds exhibited a concentration-dependent decrease in microbial populations and biofilm formation. When used together, they displayed a remarkable synergistic effect, greatly augmenting their antibacterial activity. The assessment of food quality demonstrated that these treatments have no negative impact on the sensory characteristics of chicken meat. The impact of the structure on biofilms was observed through the use of Field Emission Scanning Electron Microscopy (FE-SEM) and Confocal Laser Scanning Microscopy (CLSM), revealing disrupted biofilm architectures and decreased cell viability. Crucially, RT-PCR analysis revealed a marked downregulation of quorum sensing (luxS), virulence (hilA), and stress response (rpoS) genes, highlighting the multifaceted antimicrobial mechanism of action. This gene-specific suppression suggests a targeted disruption of bacterial communication and virulence pathways, offering insight into the comprehensive antibiofilm strategy. This provides further insight into the molecular mechanisms that contribute to their antibiofilm effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call