Abstract

BackgroundIonizing-radiation induces oxidative stress and thyroid toxicity. Thyroid function disorders have a great impact on fertility in both sexes.Materials and MethodsForty female rats were divided into four groups. Control, Spirulina-treated (300 mg/kg); given orally for 15 days, γ-irradiated; given (5 Gy whole body γ-rays) and Spirulina+irradiated; given Spirulina for 15 days before irradiation. Animals were sacrificed the 3rd day post-irradiation. The level of the oxidant/antioxidant markers: Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) was evaluated. In addition, caspase-3 activity was measured as apoptotic marker and comet assay to detect DNA-damage. Serum thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) were determined to evaluate the thyroid function alterations. Also, analysis of reproductive hormones; follicle stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2) and progesterone (P4) was detected. ResultsWhole body γ-irradiation-induced oxidative stress, denoted by significant decreases of antioxidant markers and an increase in MDA content. The activity of caspase-3 was significantly increased and comet assay revealed DNA damage. Also, serum level of TSH was significantly increased, while T3, and T4, significantly decreased in irradiated rats. Moreover, the reproductive hormones showed significant decreases. Spirulina treatment has significantly attenuated oxidative stress in thyroid tissues, decreased caspase-3 activity and ameliorated DNA damage, concomitant with significant amelioration in the levels of thyroid and reproductive hormones.ConclusionSpirulina may alleviate γ-rays-induced thyroid damage and play a significant role in the regulation of thyroid and reproductive hormones in female rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.