Abstract

Bacterial genome nucleotide sequences are being completed at a rapid and increasing rate. Integrated virus genomes (prophages) are common in such genomes. Fifty-one of the 82 such genomes published to date carry prophages, and these contain 230 recognizable putative prophages. Prophages can constitute as much as 10-20% of a bacterium's genome and are major contributors to differences between individuals within species. Many of these prophages appear to be defective and are in a state of mutational decay. Prophages, including defective ones, can contribute important biological properties to their bacterial hosts. Therefore, if we are to comprehend bacterial genomes fully, it is essential that we are able to recognize accurately and understand their prophages from nucleotide sequence analysis. Analysis of the evolution of prophages can shed light on the evolution of both bacteriophages and their hosts. Comparison of the Rac prophages in the sequenced genomes of three Escherichia coli strains and the Pnm prophages in two Neisseria meningitidis strains suggests that some prophages can lie in residence for very long times, perhaps millions of years, and that recombination events have occurred between related prophages that reside at different locations in a bacterium's genome. In addition, many genes in defective prophages remain functional, so a significant portion of the temperate bacteriophage gene pool resides in prophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.