Abstract

AbstractPoly(N‐isopropylacrylamide) (PNIPA)/silica composite hydrogels were prepared and the effects of the silica incorporation on the swelling and breaking characteristics of the hydrogels were investigated. To improve the dispersive property of silica in the PNIPA matrix via the formation of covalent bonds between the polymer and silica, vinyl groups were introduced in the silica by reacting it with a coupling agent, 3‐methacryloxypropyltrimethoxysilane. When unmodified silica was used as filler in the PNIPA‐composite hydrogel, the swelling ratio of the composite hydrogel below the critical gel transition temperature (CGTT) increased with increasing silica content. However, when the modified silica was used as the filler, the swelling ratio below CGTT decreased with increasing silica content because of the enhanced distribution and additional crosslinking. Above CGTT, the swelling ratios of the PNIPA/silica hydrogels were similar regardless of the silica modification. The gel breaking stress of the hydrogels increased with increasing silica content, and this enhancement was larger for the modified silica hydrogel. Scanning electron microscopy images showed that the modified silica particles were distributed more evenly in the PNIPA matrix than the unmodified ones were and that the size of cell‐like structure of the hydrogel decreased with increasing modified silica content. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.