Abstract

Recently, global awareness of the adverse environmental impacts of single-use plastics has risen due to their nonbiodegradability and likelihood of ending up in the ocean. Thermoplastic starch (TPS) is an alternative material employed for manufacturing single-use products because of its high biodegradability, nontoxicity, and low cost. However, TPS is moisture sensitive and has poor mechanical properties and processability. Blending TPS with biodegradable polyesters, including poly(butylene adipate-co-terephthalate) (PBAT), can expand its practical applications. This research aims to improve the performance of TPS/PBAT blends by adding sodium nitrite, a food additive, and considering its effect on the morphological characteristics and properties of TPS/PBAT blends. TPS/PBAT/sodium nitrite (TPS/PBAT/N) blends with a TPS:PBAT weight ratio of 40:60 and sodium nitrite concentrations of 0.5, 1, 1.5, and 2 wt% were prepared by extrusion and then blown into films. The acids generated from the sodium nitrite during extrusion led to the molecular weight reduction of starch and PBAT polymers, causing the increased melt flow ability of the TPS/PBAT/N blends. The incorporation of sodium nitrite improved the blends' homogeneity and the compatibility between the TPS and PBAT phases, resulting in the increased tensile strength, extensibility, impact strength, and oxygen barrier properties of the TPS/PBAT blend film.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call