Abstract

A nanodiamond-polymer composite monolithic column was first prepared successfully with modified nanodiamond (ND) as monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, 1-dodecanol as porogenic agent and benzoyl peroxide/dimethylacetamide (BPO/DMA) as initiator at 35°C for 2.5h. There was a sharp increase of specific surface area with ND added about 22 times from 0mg (3.90m2/g) to 7mg (81.2m2/g) determined with BET. Characterizations including scanning electron microscopy (SEM), fourier-transform infrared spectra (FIRT) and mercury intrusion porosimetry (MIP) were used to determine the microstructure, group composition, pore size distribution (≃1.56μm) and porosity (≃0.7484μm) of the monolith. An excellent column stability was confirmed by permeability (1.258x10−10cm2) and good linearity (R2=0.998) corresponding to backpressures measured at different flow rates. The highest swelling ability of the composite was about (5%) and classical RPLC of the column obtained occurred with the acetonitrile concentration increasing from 20% to 85% in the mobile phase, above which another retention model of normal-phase chromatography appeared. The items of the eddy dispersion and the absorption-release kinetics were the decisional factors of the composite column compared with the factors of longitudinal diffusion, and the skeleton-eluent mass transfer resistance due to the finite diffusivity. Good separation of neutral and basic small molecules was obtained (24,350 plates/m for neutral molecules and 22,300 plates/m for basic ones) with the hydrophobicity retention mechanism, but not for the acidic ones except to regulate the pH of the mobile phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call