Abstract

Nanosecond lasers of different intensities were pulsed into sputter-deposited amorphous thin films of near equiatomic Ni/Ti composition to produce partially crystallized highly sensitive R-phase spots surrounded by amorphous regions. Scanning electron microscopy having secondary and back-scattered electrons, field emission scanning electron microscopy, optical microscopy and X-ray diffraction patterns were used to characterize the laser treated spots. Effect of nanosecond pulse lasering on microstructure, morphology, thermal diffusion and inclusion formation was investigated. Increasing beam intensity and laser pulse-number promoted amorphous to R-phase transition. Lowering duration of the pulse incidence reduced local film oxidation and film/substrate interference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.