Abstract

A Banach space $X$ has the reciprocal Dunford-Pettis property ($RDPP$) if every completely continuous operator $T$ from $X$ to any Banach space $Y$ is weakly compact. A Banach space $X$ has the $RDPP$ (resp. property $(wL)$) if every $L$-subset of $X^*$ is relatively weakly compact (resp. weakly precompact). We prove that the projective tensor product $X \otimes{_\pi} Y$ has property $(wL)$ when $X$ has the $RDPP$, $Y$ has property $(wL)$, and $L(X,Y^*)=K(X,Y^*)$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.