Abstract

Cobalt oxide (Co3O4) nanostructures with different morphologies (nanocubes, nanoplates, and nanoflowers) were synthesized by a simple hydrothermal method and used for catalytic oxidation of soot particles. Through the study of the physicochemical properties of the catalysts, the key factors affecting the performance of soot oxidation were investigated. The results showed that all three kinds of Co3O4 nanocrystals exhibited excellent low-temperature activity in catalytic oxidation of soot, and the Co3O4 nanoflowers showed higher oxidation activity of soot compared with Co3O4 nanocubes and Co3O4 nanoplates, whose T m was only 370 °C. The excellent activity of Co3O4 nanoflowers was due to the large amount of Co3+ and lattice oxygen on their surface and highly defective structure, which promoted the adsorption and activation of oxygen species. The large crystallite size and few surface defects were the main reasons for the poor catalytic performance of Co3O4 nanocubes. During soot oxidation, the crystallite size of the catalysts and the contact between the catalysts and soot played a significant role in the catalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call