Abstract

In this paper, we introduces the property (a B w), a variant of generalized a-Weyl’s theorem for a bounded linear operator T on an infinite-dimensional Banach space \(\mathbb {X}\). We establish several sufficient and necessary conditions for which property (a B w) holds. Also, we prove that if \(T\in \mathbf {L(\mathbb {X})}\) satisfies property (a B w) then T satisfies property (B w). Certain conditions are explored on Hilbert space operators T and S so that T ⊕ S obeys property (a B w).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.