Abstract

The ground state and first intrinsic excited state of superheavy nuclei with Z = 120 and N = 160–204 are investigated using both nonrelativistic Skyrme–Hartree–Fock (SHF) and the axially deformed relativistic mean field (RMF) formalisms. We employ a simple BCS pairing approach for calculating the energy contribution from pairing interaction. The results for isotopic chain of binding energy (BE), quadrupole deformation parameter, two neutron separation energies and some other observables are compared with the finite range droplet model (FRDM) and some recent macroscopic–microscopic calculations. We predict superdeformed ground state solutions for almost all the isotopes. Considering the possibility of magic neutron number, two different modes of α-decay chains 292120 and 304120 are also studied within these frameworks. The Qα-values and the half-life [Formula: see text] for these two different modes of decay chains are compared with FRDM and recent macroscopic–microscopic calculations. The calculation is extended for the α-decay chains of 292120 and 304120 from their excited state configuration to respective configuration, which predicts long half-life [Formula: see text] (in seconds).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.