Abstract

To address concerns over plastics in the global environment, this project produced three wood plastics composites (WPCs) which could divert plastics from the waste stream into new materials. The three materials made had a ratio of 85%:15%, 90%:10%, and 95%:5% low density polyethylene (LDPE) to wood powder and were produced using the dissolution method. Physical and mechanical properties of each WPC were evaluated according to Japanese Industrial Standard (JIS) A 5908:2003. Their degradation in nature was evaluated through a graveyard test and assay test conducted in Coptotermes curvignathus termites. Results showed that density, moisture content, thickness swelling and water absorption of the WPCs fulfilled the JIS standard. The mechanical properties of these composites also met the JIS standard, particularly their modulus of elasticity (MOE). Modulus of rupture (MOR) and internal bonding (IB) showed in lower values, depending on the proportion of wood filler they contained. Discoloration of the WPCs was observed after burial in the soil with spectra alteration of attenuated transmission reflectance (ATR) in the band of 500-1000 cm-1 which could be assigned to detach the interphase between wood and plastics. As termite bait, the WPCs decreased in weight, even though the mass loss was comparatively small. Micro Confocal Raman Imaging Spectrometer revealed that termite guts from insects feeding on WPCs contained small amounts of LDPE. This indicated termite can consume plastics in the form of WPCs. Thus WPCs made predominantly of plastics can be degraded in nature. While producing WPCs can assist in decreasing plastics litter in the environment, the eventual fate of the LDPE in termites is still unknown.

Highlights

  • Production and consumption of plastics worldwide has increased rapidly since the 1950s [1]

  • wood plastics composites (WPCs) made of predominantly low density polyethylene (LDPE) thermoplastic was successfully manufactured without a coupling agent by using the precipitation method

  • WPCs degradation was evaluated by the graveyard test and an assay test in termites

Read more

Summary

Introduction

Production and consumption of plastics worldwide has increased rapidly since the 1950s [1]. Some scientists have been exploring new types of plastics, for example biopolymers [4] and bio-degradable plastics [5], or mixtures of bio-plastics with natural fillers [6,7] in order to substitute the current suite of plastic materials with materials that will potentially cause less environmental harm. These efforts remain fairly localized, depending the local government policies and waste management strategies within each nation [8]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.