Abstract

Polysaccharides are the main macromolecules of colloidal nature in wines, and play a fundamental role in the technological properties and organoleptic characteristics of the wines. The role of the different wine polysaccharides will depend on their quantity but also on their chemical composition, molecular structure and origin. Wine polysaccharides originate from grapes and yeast acting during the winemaking. The main polysaccharides present in wines can be grouped into three major families: (i) polysaccharides rich in arabinose and galactose (PRAG), (ii) polysaccharides rich in rhamnogalacturonans (RG-I and RG-II), which both come from the pectocellulosic cell walls of grape berries, and (iii) mannoproteins (MP) released by yeasts. This paper describes the origin, structure and role of the different wine polysaccharide families through a bibliographic revision of their origin and extraction into the wines, as well as their technological and sensory properties.

Highlights

  • Polysaccharides are the main macromolecules of colloidal nature in wines

  • The main polysaccharides present in wines can be grouped into three major families: (i) polysaccharides rich in arabinose and galactose (PRAG) [13] and (ii) polysaccharides rich in rhamnogalacturonans (RG-I and RG-II), which both come from the pectocellulosic cell walls of the grape berries [13], and (iii) mannoproteins (MP) produced and released by yeasts during the fermentation and the aging of wines on their lees [8]

  • The oenological interest of polysaccharides has induced the development of several commercial products

Read more

Summary

Introduction

The content of the different polysaccharide families in the wines depends mainly on the grape variety and its degree of maturation, the winemaking technology used (including type of strain of yeast and bacteria), and the transformation of the polysaccharides during the wine aging process [1–5]. These macromolecules show different technological properties in wines. Wine polysaccharides are widely known for their effect on the physicochemical stabilization of wine; they are able to interact with the colloidal particles present in wines, reducing their reactivity and limiting their aggregation and flocculation [6].

Objectives
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.