Abstract

Abstract Thin films of vanadium cerium mixed oxides are good counter-electrodes for electrochromic devices because of their passive optical behavior and very good charge capacity. We deposited thin films of V–Ce mixed oxides on glass substrates by RF magnetron sputtering under argon at room temperature using different power settings. The targets were pressed into pellets of a powder mixture of V2O5 and CeO2 at molar ratios of 2:1, 1:1, and 1:2. For a molar ratio of 2:1, the resulting crystalline film comprised an orthorhombic CeVO3 phase and the average grain size was 89 nm. For molar ratios of 1:1 and 1:2, the resulting films were completely amorphous in nature. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy data confirmed these results. The optical properties of the films were studied using UV-Vis-NIR spectrophotometry. The transmittance and indirect allowed bandgap for the films increased with the RF power, corresponding to a blue shift of the UV cutoff. The average transmittance increased from 60.9% to 85.3% as the amount of CeO2 in the target material increased. The optical bandgap also increased from 1.94 to 2.34 eV with increasing CeO2 content for films prepared at 200 W. Photoacoustic amplitude (PA) spectra were recorded in the range 300–1000 nm. The optical bandgap was calculated from wavelength-dependent normalized PA data and values were in good agreement with those obtained from UV-Vis-NIR data. The thermal diffusivity calculated for the films increased with deposition power. For thin films deposited at 200 W, values of 53.556×10−8, 1.069×10−8, and 0.2198×10−8 m2/s were obtained for 2:1, 1:1, and 1:2 V2O5/CeO2, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.