Abstract

AbstractPolypropylene (PP) films have been prepared through two different cast extrusion processes: one using a machine direction orientation (MDO) unit and the other stretching the films at the die under high cooling conditions (lab unit). Films for two PP resins different in molecular structure have been prepared using both processing techniques. The effect of the resin structure and the processing conditions on the film properties has been examined. It was found that the MDO unit generated a highly oriented fibrillar crystalline structure with a distribution of elongated thick fibrils while extrusion under high cooling conditions generated an oriented row nucleated lamellar structure. The films showed distinctive tensile responses in stretching, with a strong solid‐elastic response for the oriented MDO films and a steady strain hardening after yielding for the sample obtained from lab unit cast extrusion. It was found that the strength in the transverse direction (TD) was particularly very low for the oriented MDO films made of the bimodal PP. The oxygen permeability was reduced with increasing draw ratio (DR) for the MDO films. The haze property for the MDO samples reduced to a plateau for DR up to 5 while clarity improved continuously with DR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call