Abstract

A nonuniform two-dimensional electron gas in a heterojunction with inserted self-organized electrically inactive dots (acting as antidots) has been fabricated by molecular-beam epitaxy of AlGaAs/AlInAs/GaAs layer sequences. Transport measurements give the ratio of the transport mobility to the quantum mobility less than four, which suggests that the dominant scattering at low magnetic fields is the short-range scattering from the lateral potential of the antidots. Far-infrared cyclotron resonance (CR) spectra show an absorption mode as narrow as 0.5 cm−1 at high magnetic fields associated with the high-mobility electron gas formed between the antidot islands and confined in the lateral directions. The confinement energy of 14 cm−1 is derived from the CR spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.