Abstract

The spectral properties of high-reflection mirrors imbued with two-dimensional (2D) subwavelength periodicity are investigated. The reflectors are designed in a silicon-on-glass film that is partially etched to implement a zero-contrast interface between the grating pillars and the sublayer, thereby annulling the local reflections and phase changes associated with hard interfaces. This approach has shown impressive results for 1D polarized reflectors; here we strive to discover analogous wideband unpolarized reflectors. Using particle swarm optimization, we report wideband unpolarized reflectors in the 1.4-2.0μm wavelength band. A 2D reflector with square pillars exhibits 99% reflectance across a bandwidth exceeding 350nm and possesses tolerance against angular deviations. The complementary structure with rectangular periodic voids achieves a bandwidth of 370nm. A comparable, optimized 2D high-contrast grating reflector with grating pillars residing directly on the substrate yields a 99% bandwidth of 240nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call