Abstract
From August to October 2010 lidar measurements of aerosols in the troposphere were performed at Otlica observatory, Slovenia, using a vertical scanning elastic lidar. The lidar data sample, which contains 38 nighttime vertical profiles of the mean aerosol extinction, was combined with continuous ozone concentration (O3), particulate matter concentrations (PM) and daily radiosonde data. The obtained radiosonde- and lidar-derived heights of the atmospheric boundary layer (ABL), which varied considerably from day to day, were found to be in good agreement. The mean values of the aerosol optical depth (AOD) at 355 nm, were calculated separately for the ABL and for the free troposphere (FT). A ten-fold increase of the FT AOD was observed during the days with predicted presence of Saharan dust above the lidar site. To correlate AOD values with the type and origin of aerosols, backward trajectories of air-masses above Otlica were modeled using the HYSPLIT model and clustered. High ABL AOD values were found to be correlated with local circulations and slowly approaching air masses from the Balkans and low values with northwestern flows. The highest values correlated with southwestern flows originating in northern Africa.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Quantitative Spectroscopy and Radiative Transfer
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.