Abstract
On the Dirichlet space of the unit ball, we study some algebraic properties of Toeplitz operators. We give a relation between Toeplitz operators on the Dirichlet space and their analogues defined on the Hardy space. Based on this, we characterize when finite sums of products of Toeplitz operators are of finite rank. Also, we give a necessary and sufficient condition for the commutator and semi-commutator of two Toeplitz operators being zero.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.