Abstract
The paper focuses on the dual high-power impulse magnetron sputtering of TiAlN coatings using short pulses of high power delivered to the target. The surface morphology, elemental composition, phase composition, hardness, wear resistance, and adhesive strength of TiAlN coatings with different Al contents were investigated on WC-Co substrates. The heat resistance of the TiAlN coating was determined with synchrotron X-ray diffraction. The hardness of the TiAlN coating with a low Al content ranged from 17 to 30 GPa, and its wear rate varied between 1.8∙10-6 and 4.9∙10-6 mm3·N-1·m-1 depending on the substrate bias voltage. The HF1-HF2 adhesion strength of the TiAlN coatings was evaluated with the Daimler-Benz Rockwell C test. The hardness and wear rate of the Ti0.61Al0.39N coating were 26.5 GPa and 5.2∙10-6 mm3·N-1·m-1, respectively. The annealing process at 700 °C considerably worsened the mechanical properties of the Ti0.94Al0.06N coating, in contrast to the Ti0.61Al0.39N coating, which manifested a high oxidation resistance at annealing temperatures of 940-950 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.