Abstract

Localized electronic recombination processes in donor–acceptor pairs of luminescent materials have been recently modeled using a new kinetic model based on tunneling. Within this model, recombination is assumed to take place via the excited state of the donor, and nearest-neighbor recombinations take place within a random distribution of centers. An approximate semi-analytical version of the model has been shown to simulate successfully thermally and optically stimulated luminescence (TL and OSL), linearly modulated OSL (LM-OSL) and isothermal TL processes. This paper presents a detailed analysis of the geometrical properties of the TL glow curves obtained within three different published versions of the model. The dependence of the shape of the TL glow curves on the kinetic parameters of the model is examined by allowing simultaneous random variations of the parameters, within wide ranges of physically reasonable values covering several orders of magnitude. It is found that the TL glow curves can be characterized according to their shape factors μg, as commonly done in TL theory of delocalized transitions. The values of the shape factor are found to depend rather weakly on the activation energy E and the frequency factor s, but they have a strong dependence on the parameter ρ′ which characterizes the concentration of acceptors in the model. It is also shown by simulation that both the variable heating rate and initial rise methods are applicable in this type of model and can yield the correct value of the activation energy E. However, the initial rise method of analysis for the semianalytical version of the model fails to yield the correct E value, since it underestimates the low temperature part of the TL glow curves. Two analytical expressions are given for the TL intensity, which can be used on an empirical basis for computerized glow curve deconvolution analysis (CGCD).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.