Abstract
The presented paper describes properties of Al–6.0 wt.%Cr–2.3 wt.%Fe–0.4 wt.%Ti–0.7 wt.%Si alloy produced by powder metallurgy (PM). The powder alloy was prepared by the pressure nitrogen melt atomization. The granulometric powder fraction of less than 45 μm was then hot-extruded at 450 °C to produce a rod of 6 mm in diameter. Microstructure of the as-extruded material was composed of recrystallized α(Al) grains (the average grain size of 640 nm) and Al 13Cr 2 spheroids (the average particle diameter of 130 nm and interparticle spacing of 290 nm). Metastable phases were not observed due to their decomposition on the hot extrusion. Hardness of the as-extruded material was 108 HV1, ultimate tensile strength, 327 MPa, yield strength, 258 MPa and elongation, 14%. Mechanical properties resulted mainly from Hall–Petch strengthening. The room-temperature mechanical properties were also measured after a long-term annealing at 400 °C. The investigated PM material was compared with the commercial Al–11.8 wt.%Si–0.9 wt.%Ni–1.2 wt.%Cu–1.2 wt.%Mg casting alloy generally applied at elevated temperatures. The PM alloy showed much higher thermal stability, since its room temperature hardness and tensile properties did not degradate significantly even after annealing at 400 °C/200 h. In contrast, the hardness and strength of the casting alloy reduced rapidly already after a 30 min annealing. The excellent thermal stability of the investigated PM material was a consequence of very slow diffusivities and low equilibrium solubilities of chromium and iron in solid aluminium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.