Abstract
In this paper we examine nonlinear, nonautonomous evolution inclusions defined on a Gelfand triple of spaces. First we show that the problem with a convex-valued,h*-usc inx orientor fieldF(t, x) has a solution set which is anR δ-set inC(T, H). Then for the problem with a nonconvex-valuedF(t, x) which ish-Lipschitz inx, we show that the solution set is path-connected inC(T, H). Subsequently we prove a strong invariance result and a continuity result for the solution multifunction. Combining these two results we establish the existence of periodic solutions. Some examples of parabolic partial differential equations with multivalued terms are also included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.