Abstract

The sequential gradient-restoration algorithm (SGRA) was developed in the late 1960s for the solution of equality-constrained nonlinear programs and has been successfully implemented by Miele and coworkers on many large-scale problems. The algorithm consists of two major sequentially applied phases. The first is a gradient-type minimization in a subspace tangent to the constraint surface, and the second is a feasibility restoration procedure. In Part 1, the original SGRA algorithm is described and is compared with two other related methods: the gradient projection and the generalized reduced gradient methods. Next, the special case of linear equalities is analyzed. It is shown that, in this case, only the gradient-type minimization phase is needed, and the SGRA becomes identical to the steepest-descent method. Convergence proofs for the nonlinearly constrained case are given in Part 2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.