Abstract

In this paper, we discuss some important properties of the Riemannian curvature of (α, β)-metrics. When the dimension of the manifold is greater than 2, we classify Randers metrics of weakly isotropic flag curvature (that is, Randers metrics of scalar flag curvature with isotropic S-curvature). Further, we characterize (α, β)-metrics of scalar flag curvature with isotropic S-curvature. We also characterize Einstein (α, β)-metrics and determine completely the local structure of Ricci-flat Douglas (α, β)-metrics when the dimension dim M ≥ 3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.