Abstract

The identity of the types of different neurons in mammalian retinae is now close to being completely known for a few mammalian species; comparison reveals strong homologies for many neurons across the order. Still, there remain some cell types rarely encountered and inadequately described, despite not being rare in relative frequency. Here we describe in detail an additional ganglion cell type in rabbit that is bistratified with dendrites in both sublaminae, yet spikes only at light onset and has no response bias to the direction of moving bars. This ON bistratified ganglion cell type is most easily distinguished by the unusual behavior of its dendritic arbors. While dendrites that arborize in sublamina b terminate at that level, those that ascend to arborize in sublamina a do not normally terminate there. Instead, when they reach the approximate radius of the dendrites in sublamina b, they dive sharply back down to ramify in sublamina b. Here they continue to course even further away from the soma at the same level as the branches wholly contained in sublamina b, thereby forming an annulus of secondary ON dendrites in sublamina b. This pattern of branching creates a bistratified dendritic field of approximately equal area in the two sublaminae initially, to which is then added an external annulus of dendrites only in sublamina b whose origin is entirely from processes descending from sublamina a. It is coupled to a population of wide-field amacrine cells upon which the dendrites of the ganglion cell often terminate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.