Abstract
AbstractThe null distance for Lorentzian manifolds was recently introduced by Sormani and Vega. Under mild assumptions on the time function of the spacetime, the null distance gives rise to an intrinsic, conformally invariant metric that induces the manifold topology. We show when warped products of low regularity and globally hyperbolic spacetimes endowed with the null distance are (local) integral current spaces. This metric and integral current structure sets the stage for investigating convergence analogous to Riemannian geometry. Our main theorem is a general convergence result for warped product spacetimes relating uniform, Gromov–Hausdorff, and Sormani–Wenger intrinsic flat convergence of the corresponding null distances. In addition, we show that nonuniform convergence of warping functions in general leads to distinct limiting behavior, such as limits that disagree.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.