Abstract
We introduce a generalization of the Robinson–Schensted–Knuth insertion algorithm for semi-standard augmented fillings whose basement is an arbitrary permutation σ∈S n . If σ is the identity, then our insertion algorithm reduces to the insertion algorithm introduced by the second author (Sémin. Lothar. Comb. 57:B57e, 2006) for semi-standard augmented fillings and if σ is the reverse of the identity, then our insertion algorithm reduces to the original Robinson–Schensted–Knuth row insertion algorithm. We use our generalized insertion algorithm to obtain new decompositions of the Schur functions into nonsymmetric elements called generalized Demazure atoms (which become Demazure atoms when σ is the identity). Other applications include Pieri rules for multiplying a generalized Demazure atom by a complete homogeneous symmetric function or an elementary symmetric function, a generalization of Knuth’s correspondence between matrices of non-negative integers and pairs of tableaux, and a version of evacuation for composition tableaux whose basement is an arbitrary permutation σ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.