Abstract
AbstractThis paper is an attempt to understand a phenomenon of maximal operators associated with bases of three-dimensional rectangles of dimensions $(t,1/t,s)$ within a framework of more general Soria bases. The Jessen–Marcinkiewicz–Zygmund Theorem implies that the maximal operator associated with a Soria basis continuously maps $L\log^2L$ into $L^{1,\infty}$. We give a simple geometric condition that guarantees that the $L\log^2L$ class cannot be enlarged. The proof develops the author's methods applied previously in the two-dimensional case and is related to theorems of Córdoba, Soria and Fefferman and Pipher.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.