Abstract
The luminescent properties of Mg-doped GaN have recently received particular attention, e.g., in the light of new theoretical calculations, where the deep 2.9 eV luminescence band was suggested to be the main optical signature of the substitutional MgGa acceptor, thus, having a rather large binding energy and a strong phonon coupling in optical transitions. We present new experimental data on homoepitaxial Mg-doped layers, which together with the previous collection of data give an improved experimental picture of the various luminescence features in Mg-doped GaN. In n-type GaN with moderate Mg doping (<1018 cm−3), the 3.466 eV ABE1 acceptor bound exciton and the associated 3.27 eV donor-acceptor pair (DAP) band are the only strong photoluminescence (PL) signals at 2 K, and are identified as related to the substitutional Mg acceptor with a binding energy of 0.225 ± 0.005 eV, and with a moderate phonon coupling strength. Interaction between basal plane stacking faults (BSFs) and Mg acceptors is suggested to give rise to a second deeper Mg acceptor species, with optical signatures ABE2 at 3.455 eV and a corresponding weak and broad DAP peak at about 3.15 eV. The 2.9 eV PL band has been ascribed to many different processes in the literature. It might be correlated with another deep level having a low concentration, only prominent at high Mg doping in material grown by the Metal Organic Chemical Vapor Deposition technique. The origin of the low temperature metastability of the Mg-related luminescence observed by many authors is here reinterpreted and explained as related to a separate non-radiative metastable deep level defect, i.e., not the MgGa acceptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.