Abstract

Highly purified [D-glucose-1-14C]lactose has been used to study the transport of lactose by Klebsiella sp. strain CT-1. Strain CT-1 transports lactose by a lactose-inducible system that exhibited an apparent Km of 6 mM lactose and an apparent Vmax of 140 nmol/min per mg of cell protein. Lactose uptake was inhibited competitively by o-nitrophenyl-beta-D-galactoside with a Ki value of 8 mM, but was not inhibited by thio-beta-methyl-galactoside. D-Glucose, D-mannose, 2-deoxyglucose, and alpha-methyl-D-glucoside also inhibited lactose uptake. Phosphoenolpyruvate-dependent hydrolysis of o-nitrophenyl-beta-D-galactoside and lactose-dependent release of pyruvate from phosphoenolpyruvate by benzene-treated CT-1 cells showed that CT-1 transports lactose by a phosphoenolpyruvate:sugar phosphotransferase system. Correlations between the growth rate of CT-1 on lactose and properties of the transport system indicated that transport is the rate limiting step in utilization of lactose.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.