Abstract

A microscopical model is proposed, describing the origin and properties of three closely spaced zero-phonon lines observed in the green Cu band in ZnO:Cu crystals labelled and . These excitations are known to be formed by a charge-transfer reaction with hole bound states. These lines are shown to originate from an intermediately bound exciton of acceptor type, . This sort of exciton, in which both carriers are captured at intermediate-radius orbitals, results from the wurzite-type symmetry of the ZnO:Cu system. The electronic structure obtained for these three intermediately bound excitons enables us to explain their magneto-optic behaviour and to calculate their g-values. Additionally, we determined the quantum efficiency of both intracentre and exciton transitions by using time-resolved and calorimetric absorption spectroscopy. While no luminescence is observed in ZnS, the exciton states in ZnO are purely radiative only to the ground state, . The picture of an intermediately bound exciton explains the recombination channels and also makes clear the difference between copper states in the ZnS and ZnO systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.