Abstract
In this paper we study properties of the ideal-intersection graph of the ring Zn. The graph of ideal intersections is a simple graph in which the vertices are non-zero ideals of the ring, and two vertices (ideals) are adjacent if their intersection is also a non-zero ideal of the ring. These graphs can be referred to as the intersection scheme of equivalence classes (See: Laxman Saha, Mithun Basak Kalishankar Tiwary “Metric dimension of ideal-intersection graph of the ring Zn” [1] ).In this article we prove that the triameter of graph is equal to six or less than six. We also describe maximal clique of the ideal-intersection graph of the ring Zn. We prove that the chromatic number of this graph is equal to the sum of the number of elements in the zero equivalence class and the class with the largest number of element. In addition, we demonstrate that eccentricity is equal to 1 or it is equal to 2. And in the end we describe the central vertices in the ideal-intersection graph of the ring Zn.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.