Abstract

We have investigated the properties of the hyperpolarization-activated (I(f)) current in pacemaker cells from the mouse sino-atrial node (SAN). The I(f) current was studied in cells isolated enzymatically from the SAN region of adult C57BL6/J mice. The whole-cell variation of the patch-clamp technique was employed to investigate the basic properties of I(f). In mouse SAN cells, the I(f) current density at -120 mV was 18+/-2 pA/pF (n=23). I(f) was not detected in cells showing atrial-like morphology that were also found in SAN preparations (n=7). I(f) was blocked by 5 mM Cs(+), was inhibited by application of 5 microM acetylcholine, and was increased by 10 microM noradrenaline. The I(f) current reversal potential was -31+/-2 mV under physiological concentration of Na(+) and K(+) ions. Lowering the extracellular Na(+) concentration reduced I(f) amplitude, while increased when the extracellular K(+) concentration was augmented. I(f) voltage for half activation was -87+/-1 mV (n=6). We conclude that the native I(f) current in mouse SAN cells shows functional properties that are similar to I(f) described in rabbit SAN tissue. This study opens the possibility of investigating the involvement of I(f) in the regulation of heart rate in genetically modified mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call