Abstract

An important component of glucocorticoid steroid induction of tyrosine aminotransferase (TAT) gene expression is the glucocorticoid modulatory element (GME), which is located at -3.6 kb of the rat TAT gene. The GME both mediates a greater sensitivity to hormone, due to a left shift in the dose-response curve of agonists, and increases the partial agonist activity of antiglucocorticoids. These properties of the GME are intimately related to the binding of a heteromeric complex of two proteins (GMEB-1 and -2). We previously cloned the rat GMEB-2 as a 67-kDa protein. We now report the cloning of the other member of the GME binding complex, the 88-kDa human GMEB-1, and various properties of both proteins. GMEB-1 and -2 each possess an intrinsic transactivation activity in mammalian one-hybrid assays, consistent with our proposed model in which they modify glucocorticoid receptor (GR)-regulated gene induction. This hypothesis is supported by interactions between GR and both GMEB-1 and -2 in mammalian two-hybrid and in pull-down assays. Furthermore, overexpression of GMEB-1 and -2, either alone or in combination, results in a reversible right shift in the dose-response curve, and decreased agonist activity of antisteroids, as expected from the squelching of other limiting factors. Additional mechanistic details that are compatible with the model of GME action are suggested by the interactions in a two-hybrid assay of both GMEBs with CREB-binding protein (CBP) and the absence of histone acetyl transferase (HAT) activity in both proteins. GMEB-1 and -2 share a sequence of 90 amino acids that is 80% identical. This region also displays homology to several other proteins containing a core sequence of KDWK. Thus, the GMEBs may be members of a new family of factors with interesting transcriptional properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call