Abstract

We use density functional theory to study a free-standing 2D copper monolayer. We find that the Cu monolayer is stable in 15 ps ab initio molecular dynamics simulations up to 1200 K. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk, we observe a significantly enhanced energy per bond (0.92 versus 0.58 eV/bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. We predict various properties of this material, including band structure and density of states. The free-standing 2D Cu monolayer is hexagonal close packed and is the global minimum structure. One valence electron from each atom is delocalized and is donated into a 2D nearly free electron gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.