Abstract

Two quadratically convergent gradient methods for minimizing an unconstrained function of several variables are examined. The heart of the Fletcher and Powell reformulation of Davidon's method is a variableH-matrix. The eigenvalues and eigenvectors of this matrix for a quadratic function are explored, leading to a proof that the gradient vectors at each step are mutually orthogonal. From this, a geometric interpretation of theH-matrix in terms of the projection of the gradient into a solution subspace is derived. These properties are then used to arrive at the main result, which states that, for a quadratic function, the direction vectors generated by the Davidon algorithm and the conjugate-gradient algorithm of Hestenes and Stiefel are scalar multiples of each other, provided the initial step each takes is in the direction of steepest descent. If one assumes no round-off error and a perfect one-dimensional search, the methods generate identical steps leading to the minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.