Abstract

AbstractWe study the body of turbidity currents in normal flow conditions by means of highly resolved direct numerical simulations of a homogeneous model. We focus on turbidity currents where the net amount of sediment is held fixed. We consider the sediment to be fine enough that their settling effect is neglected, and in the companion work we consider the effect of settling velocity. We consider five different shear Richardson numbers from 5 to 80. Under normal condition, basal drag and entrainment at the interface precisely balance the momentum supplied to the current from the excess weight of the sediment. The normal flow properties of a turbidity current can be fully characterized in terms of bulk Richardson number Ri and bulk Reynolds number Re. The velocity, concentration, and turbulent kinetic energy profiles take a self‐similar shape when the current is at near‐normal conditions. We observe the flow to display supercritical features for and to display subcritical features for . From the behavior at intermediate Richardson numbers it appears that the transition between subcritical to supercritical behavior is not sharp. We observe good agreement between experimental and simulation results in both regimes. The entrainment coefficient as a function of bulk Richardson number at normal condition is in good agreement with the empirical relation and with available experimental results. We present a simple model for drag coefficient as a function of bulk Reynolds and Richardson numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.