Abstract

The aim of this study was to investigate the influence of new hybrid composites of TiO2 or SiO2 nanoparticles with poly(2,2’- bithiophene) on 50% cotton/50% polyester fabric and sheep skin leather surface properties. The dispersion-based newly made nanocomposites were analyzed to determine conductivity, particle size, polydispersity and Zeta potential. The finished textile and leather materials were characterized in terms of functionalization treatments performance by: surface resistivity, water contact behaviour, physical-mechanical characteristics and photocatalytic properties. SEM analysis was used to investigate the distribution of nanoparticles on the textile and leather materials surface. Textile materials treated with SiO2/poly(2,2’-bithiophene) nanocomposite with concentration 98 wt% nanoparticles of SiO2 and leather treated with poly SiO2/poly(2,2’-bithiophene) nanocomposite with concentration of 95 wt% nanoparticles of SiO2 showed lower resistivity values, confirming the conductive properties of silica. The higher photodegradation efficiency of functionalized materials has been obtained for textile material treated with poly TiO2/(2,2’-bithiophene)with concentration of 95 wt% nanoparticles of TiO2 and for leather material treated with TiO2/poly(2,2’-bithiophene) with concentration of 98 wt% nanoparticles of TiO2, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.