Abstract

In situ IR spectroscopic studies show that a formate, an aldehyde-like complex, and bridging and linear methoxy groups exist on the alumina surface involved in methanol conversion. In the absence of methanol in the gas phase, the interaction between two bridging methoxy groups yields dimethyl ether in the gas phase. When methanol is present in the gas phase, it interacts with methoxy groups on the surface. This reaction makes the main contribution to the formation of dimethyl ether. The linear methoxy group undergoes conversion via several routes. The main route is desorption with methanol formation in the gas phase, and no more than 10% of the linear methoxy groups are converted into formate and aldehyde, which are CO2 sources in the gas phase. In the absence of methanol in the gas phase, the conversion rate of the methoxy groups is independent of the presence of water and oxygen. A scheme of the surface reactions is suggested to explain the conversion of the methoxy groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.