Abstract
We analyzed the size, intensity, and magnetic field strength of sunspot umbrae to compare the present cycle 24 with the previous one. We used data of the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and selected all sunspots between May 2010 and October 2012, using one image per day. We created two subsets of this data with a manual tracking algorithm, both without duplication. One is containing each sunspot (910 umbrae within 488 spots) and was used to analyze the distribution of umbral areas, selected with an automated thresholding method. The other one contains 205 fully evolved sunspots. We find nonlinear relations between umbral minimum intensity and size and between maximum magnetic field strength and size. The field strength scales linear with the intensity and the umbral size scales roughly linear with the total magnetic flux, while the size and field strength level off with stronger flux. When separated in hemisphere and averaged temporally, the southern umbrae show a temporal increase in size and the northern umbrae stay constant. There is no temporal variation in the umbral mean intensity detectable. The probability density function of the umbral area in the ascending phase of the current solar cycle is similar to that of the last solar cycle. From our investigation of umbral area, magnetic field, magnetic flux and umbral intensity of the sunspots of the rising phase of cycle 24, we do not find a significant difference to the previous cycle, and hence no indication for a long-term decline of solar activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.