Abstract

We identify more than 10 steady sub-Alfvénic solar wind intervals from the measurements of the Parker Solar Probe (PSP) from encounter 8 to encounter 14. An analysis of these sub-Alfvénic intervals reveals similar properties and similar origins. In situ measurements show that these intervals feature a decreased radial Alfvén Mach number resulting from a reduced density and a relatively low velocity, and that switchbacks are suppressed in these intervals. Magnetic source tracing indicates that these sub-Alfvénic streams generally originate from the boundaries inside coronal holes or narrow/small regions of open magnetic fields. Such properties and origins suggest that these streams are mostly low Mach-number boundary layers (LMBLs), which is a special component of the pristine solar wind proposed by Liu et al. We find that the LMBL wind, the fast wind from deep inside coronal holes, and the slow streamer wind constitute three typical components of the young solar wind near the Sun. In these sub-Alfvénic intervals, the Alfvén radius varies between 15 and 25 solar radii, in contrast with a typical 12 radii for the Alfvén radius of the super-Alfvénic wind. These results give a self-consistent picture interpreting the PSP measurements in the vicinity of the Sun.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call