Abstract

We consider a measure of dependence for symmetric α-stable random vectors, which was introduced by the second author in 1976. We demonstrate that this measure of dependence, which we suggest to call the spectral covariance, can be extended to random vectors in the domain of normal attraction of general stable vectors. We investigate the asymptotic of the spectral covariance function for linear stable (Ornstein–Uhlenbeck, log-fractional, linear-fractional) processes with infinite variance and show that, in comparison with the results on the properties of codifference of these processes, obtained two decades ago, the results for the spectral variance are obtained under more general conditions and calculations are simpler.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.