Abstract

We study selected properties of Solar Energetic Particle (SEP) events as inferred from their associated radio emissions. We used a catalogue of 115 SEP events that consists of entries of proton intensity enhancements at one AU, with complete coverage over solar cycle 23, based on high-energy (~68 MeV) protons from SOHO/ERNE and we calculated the proton release time at the Sun using velocity dispersion analysis (VDA). After an initial rejection of cases with unrealistic VDA path lengths, we assembled composite radio spectra for the remaining events using data from ground-based and space-borne radio-spectrographs. For every event we registered the associated radio emissions and we divided the events in groups according to their associated radio emissions. The proton release was found to be most often accompanied by both type III and II radio bursts, but a good association percentage was also registered in cases accompanied by type IIIs only. The worst association was found for the cases with type II only association. These radio association percentages support the idea that both flare- and shock-resident particle release processes are observed in high-energy proton events. In cases of type III-associated events we extended our study to the timings between the type III radio emission, the proton release, and the electron release as inferred from VDA based on Wind/3DP 20-646 keV data. Typically, the protons are released after the start of the associated type III bursts and simultaneously or before the release of energetic electrons. For the cases with type II radio association we found that the distribution of the proton release heights had a maximum at ~2.5 Rs. Most (69%) of the flares associated to our SEP events were located at the western hemisphere, with a peak within the well-connected region of 50-60 deg western longitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.