Abstract

Small molecules with insulin mimetic effects and oral availability are of interest for potential substitution of insulin injections in the treatment of diabetes. We have searched databases for compounds capable of mimicking one epitope of the insulin molecule known to be involved in binding to the insulin receptor (IR). This approach identifies thymolphthalein, which is an apparent weak agonist that displaces insulin from its receptor, stimulates auto- and substrate phosphorylation of IR, and potentiates lipogenesis in adipocytes in the presence of submaximal concentrations of insulin. The various effects are observed in the 10(-5)-10(-3) M range of ligand concentration and result in partial insulin activity. Furthermore, analogues of the related phenol red and fluorescein molecules fully displace insulin from the IR ectodomain, however, without insulin agonistic effects. The interactions are further characterized by NMR, UV-vis, and fluorescence spectroscopies. It is shown that both fluorescence and UV-vis changes in the ligand spectra induced by IR fragments occur with Kd values similar to those obtained in the displacement assay. Nevertheless, insulin itself cannot completely abolish binding of the small molecules. Determination of the binding stoichiometry reveals multiple binding sites for ligands of which one overlaps with the insulin binding site on the receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call