Abstract
We investigate single charged particle dynamics in the earth's magnetotail by examining a reversal with simple spatial dependence (the field lines are parabolic) but with general time dependence, which includes the associated induction electric field. The parabolic spatial dependence has, in static models, been shown by previous authors to imply that various regular and stochastic regimes of behavior exist, with particles remaining in a given regime for all time t. Here we show that, in general, time dependence yields transitions in behavior between the various regimes of regular and stochastic behavior. We identify three independent parametric coordinates which are functions of the field spatial and temporal scales, and the particle gyroscales, and time, which will indicate the regime of particle behavior at any given t. For specific time dependent field models these parametric coordinates can be inverted to directly give the timescales for transitions between one regime of behavior and another in terms of the field and particle spatial and temporal scales. These parametric coordinates have no direct analogue in static models. For a general thinning and folding sheet (representing the magnetotail magnetic field close to the center plane just before substorm onset) this characterization implies that stochastic dynamics may only occur over a finite time period and may not occur under certain circumstances. This may have implications for our understanding of the role played by single particle dynamics in the destabilization or reconfiguration of the magnetotail current sheet associated with substorms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.