Abstract
Silver nanolayers were sputtered on polytetrafluoroethylene (PTFE) and subsequently transformed into discrete nanoislands by thermal annealing. The Ag/PTFE composites prepared under different conditions were characterized by several complementary methods (goniometry, UV-visible spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy), and new data on the mechanism of Ag layer growth and Ag atom clustering under annealing were obtained. Biocompatibility of selected Ag/PTFE composites was studied in vitro using vascular smooth muscle cell (VSMC) cultures. Despite of the well-known inhibitory properties of silver nanostructures towards broad spectrum of bacterial strains and cells, it was found that very thin silver coating stimulates both adhesion and proliferation of VSMCs.
Highlights
Nanomaterials and nanoparticles have recently received considerable attention because of their unique properties and diverse applications in biotechnology and life science
The main aim of this paper is to find out whether the silver nanostructures, which are generally known for their inhibitory properties towards broad spectrum of bacterial strains, deposited on polytetraethylfluorene (PTFE) conform to cell cultures cultivated on this composite
Since the cell adhesion and proliferation are strongly affected by chemical composition, surface morphology, wettability, and other physicochemical properties of underlying carrier, the silver/PTFE composites prepared under different conditions were characterized by various complementary analytical methods
Summary
Nanomaterials and nanoparticles have recently received considerable attention because of their unique properties and diverse applications in biotechnology and life science. Nanosilver products, which have well-known antimicrobial properties, have been used extensively in a range of medical settings [1,2,3,4,5]. Bactericidal properties of silver in the form of ions, nanoparticles, or composite nanodevices based on thin Ag films have been broadly reported [6,7]. Antibacterial properties, are one, but not the only prerequisites for successful integration of functional artificial materials into living tissues. Biocompatibility and side cytotoxicity of such materials have to be considered too. Cell survival and cell death are two major toxicity endpoints that can be rapidly and effectively measured using in vitro experimental models employing cultured mammalian cells [8,9,10]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.