Abstract

We consider two types of entropy, namely, Shannon and Rényi entropies of the Poisson distribution, and establish their properties as the functions of intensity parameter. More precisely, we prove that both entropies increase with intensity. While for Shannon entropy the proof is comparatively simple, for Rényi entropy, which depends on additional parameter α > 0, we can characterize it as nontrivial. The proof is based on application of Karamata’s inequality to the terms of Poisson distribution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.